OBJECTIVE MATHEMATICS Volume 1 Descriptive Test Series

CHAPTER-5 : THEORY OF EQUATIONS

UNIT TEST-1

1. If $a>b>0$ and $a^{3}+b^{3}+27 a b=729$ then the quadratic equation $a x^{2}+b x-9=0$ has roots $\alpha, \beta(\alpha<\beta)$. Find the value of $4 \beta-\mathrm{a} \alpha$.
2. Let α and β be roots of $x^{2}-6\left(t^{2}-2 t+2\right) x-2=$ 0 with $a>\beta$. If $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$, then find the minimum value of $\frac{a_{100}-2 a_{98}}{a_{99}}$ (where $t \in R$)
3. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation x^{4} $-K x^{3}+K x^{2}+L x+M=0$, where K, L and M are real numbers, then the minimum value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is $-n$. Find the value of n.
4. Consider $y=\frac{2 x}{1+x^{2}}$, where x is real, then the range of expression $y^{2}+y-2$ is $[a, b]$. Find $b-4 a$.
5. If a, b, c are real numbers, $a \neq 0$. If α is a root of $a^{2} x^{2}+b x+c=0, \beta$ is a root of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$, then the equation $a^{2} x^{2}+2 b x+2 c$ $=0$ has a root γ that always lies between α and β.
6. Let $-1 \leq p \leq 1$. Show that the equation $4 x^{3}-3 x-$ $p=0$ has a unique root in the interval $\left[\frac{1}{2}, 1\right]$ and identify it.
7. For real values of x, if the expression $\frac{(a x-b)(d x-c)}{(b x-a)(c x-d)}$ assumes all real values then $\left(a^{2}-b^{2}\right)$ and $\left(c^{2}-d^{2}\right)$ must have the same sign.
8. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.

Hints and Solutions

1. $a>b>0$

Simplify the given equation.

$$
a^{3}+b^{3}+27 a b=729
$$

$\Rightarrow a^{3}+b^{3}+(-9)^{3}-3 a b(-9)=0$
Using : $a^{3}+b^{3}+c^{3}-3 a b c$

$$
\begin{gathered}
=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
\Rightarrow(a+b-9)\left(a^{2}+b^{2}-a b+9 a+9 b+81\right)=0
\end{gathered}
$$

Therefore, $a+b-9=0$

$$
a+b=9
$$

Let, $\quad f(x)=a x^{2}+b x+c$

$$
\begin{aligned}
a x^{2}+b x-9 & =0 \Rightarrow \alpha+\beta=\frac{-b}{a} \\
\Rightarrow \quad \alpha \beta & =\frac{-9}{a}(\alpha<\beta) \\
a & >b>0
\end{aligned}
$$

$$
f(1)=a+b-9
$$

Thus it is clear that 1 is the root of given quadratic equation.
either $a=1$ or $b=1$ if $b=1$

$$
\alpha=\frac{-9}{a}
$$

We need

$$
\begin{aligned}
4 \beta-a \alpha & =4 \times 1-a\left(-\frac{9}{a}\right) \\
& =4+9=13
\end{aligned}
$$

2. $x^{2}-6\left(t^{2}-2 t+2\right) x-2=0$

Roots are α, β

$$
\begin{array}{ll}
\therefore & \alpha^{2}-6\left(t^{2}-2 t+2\right) \alpha-2 \\
& \alpha^{2}-2=6\left(t^{2}-2 t+2\right) \alpha \\
\therefore & \alpha^{100}=6\left(t^{2}-2 t+2\right) \alpha^{98}
\end{array}
$$

$$
\begin{aligned}
\alpha^{100}-2 \alpha^{98} & =6\left(t^{2}-2 t+2\right) \alpha^{99} \\
\therefore \quad \beta^{100}-2 \beta^{98} & =6\left(t^{2}-2 t+2\right) \beta^{99} \\
a_{x} & =\alpha^{x}-\beta^{x} \\
\frac{a_{100}-2 a_{98}}{a_{99}} & =\frac{\alpha^{100}-2 \alpha^{98}-\beta^{100}+2 \beta^{98}}{\alpha^{99}-\beta^{99}} \\
& =\frac{6\left(t^{2}-2 t+2\right)\left(\alpha^{99}-\beta^{99}\right)}{\left(\alpha^{99}-\beta^{99}\right)}
\end{aligned}
$$

minimum value of $\left(t^{2}-2 t+2\right)=1$
\therefore so minimum value $=6$
3. Given, $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}-K x^{3}+K x^{2}+L x+M=0$.
Then from the relation between the root and coefficient we get,

$$
\begin{equation*}
\Sigma \alpha=\alpha+\beta+\gamma+\delta=K \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma \alpha \cdot \beta=K \tag{2}
\end{equation*}
$$

and $\quad \alpha \cdot \beta \cdot \gamma \cdot \delta=M$.
Now, $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\Sigma \alpha)^{2}-2(\Sigma \alpha \cdot \beta)$

$$
\begin{aligned}
& =K^{2}-2 K \quad \text { [Using (1) and (2)] } \\
& =K^{2}-2 K+1-1 \\
& =(K-1)^{2}-1 .
\end{aligned}
$$

We have minimum value of $(K-1)^{2}$ is 0 as $(K-1)^{2} \geq 0$.
So the minimum value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is -1 .
4. Given, $y=\frac{2 x}{1+x^{2}}$

$$
\Rightarrow \quad y x^{2}-2 x+y=0
$$

Since $x \in R$, discriminant ≥ 0

$$
\begin{array}{ll}
\Rightarrow & 2^{2}-4 y^{2} \geq 0 \\
\Rightarrow & 1-y^{2} \geq 0 \Rightarrow y^{2}-1 \leq 0 \\
\Rightarrow & (y-1)(y+1) \leq 0 \\
\Rightarrow & y \in[-1,1] \\
& g(y)=y^{2}+y-2
\end{array}
$$

We need to find extremums of $g(y)$ on the interval $-1 \leq y \leq 1$

$$
\begin{gathered}
g^{\prime}(y)=2 y+1=0 \Rightarrow y=-\frac{1}{2} \\
g\left(-\frac{1}{2}\right)=\frac{1}{4}-\frac{1}{2}-2=-\frac{9}{4} \\
g(-1)=1-1-2=-2 \\
g(1)=1+1-2=0
\end{gathered}
$$

Range of $y^{2}+y-2$ is $\left[0,-\frac{9}{4}\right]$

So $b=0$ and $a=-\frac{9}{4}$ and hence $b-4 a=9$
5. $a^{2} \alpha^{2}+b \alpha+c=0$
and $\quad \alpha^{2} \beta^{2}-b \beta-c=0$
Let $f(x)=a^{2} x^{2}+2 b x+2 c$

$$
\begin{aligned}
f(\alpha) & =a^{2} \alpha^{2}+2(b \alpha+c) \\
& =a^{2} \alpha^{2}-2 a^{2} \alpha^{2}=-a^{2} \alpha^{2}=- \text { ive, by (1) } \\
f(\beta) & =a^{2} \beta^{2}+2(b \beta+c) \\
& =a^{2} \beta^{2}+2 a^{2} \beta^{2}=3 a^{2} \beta^{2} \\
& =+ \text { ive, by (2) }
\end{aligned}
$$

Since $f(\alpha)$ and $f(\beta)$ are of opposite signs then we know from theory of equations that a root γ of the equation $f(x)=0$ lies between α and β.
6. $f(x)=4 x^{3}-3 x-p=0$

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}-3=12\left(x^{2}-\frac{1}{4}\right) \\
& =12\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=+ \text { ive for } x \geq \frac{1}{2}
\end{aligned}
$$

Thus $f(x)$ is an increasing function for $x \geq \frac{1}{2}$
Now $f\left(\frac{1}{2}\right)=\frac{1}{2}-\frac{3}{2}-p=-1-p=-$ ive
$f(1)=4-3-p=1-p$
$=+$ ive $\quad \because-1 \leq p \leq 1$
Since $f(a)$ and $f(b)$ are of opposite signs there exists at least one or in general three rots of $f(x)=0$ between a and b i.e., between $\frac{1}{2}$ and 1 . But $f(x)$ is an increasing function for $x \geq \frac{1}{2}$. Hence there exists only one root in $\left[\frac{1}{2}, 1\right]$. Put $x=\cos \theta$.
$\Rightarrow \quad 4 \cos ^{3} \theta-3 \cos \theta-p=0$
or $\quad \cos 3 \theta=p$ or $\theta=\frac{1}{3} \cos ^{-1} p$
or $\quad \cos ^{-1} x=\left(\frac{1}{3} \cos ^{-1} p\right)$
or $\quad x=\cos \left(\frac{1}{3} \cos ^{-1} p\right)$ where $-1 \leq p \leq 1$.
7. $y=$ given expression
$\Rightarrow(a b-b c y) x^{2}+(a c+b d)(y-1) x+(b c-a d y)=0$
Since x is real $\Rightarrow \Delta \geq 0$
$(a c+b d)^{2}(y-1)^{2}-4(a d-b c y)(b c-a d y) \geq 0$
$\forall y \in R$
or

$$
\begin{array}{r}
(a c-b d)^{2} y^{2}+2\left\{2\left(a^{2} d^{2}+b^{2} c^{2}\right)-(a c+b d)^{2}\right\} y \\
+(a c-b d)^{2} \geq 0 \forall y \in R
\end{array}
$$

Above expression is to be +ive and its first term is +ive.
Hence $\Delta<0$
$4\left\{2\left(a^{2} d^{2}+b^{2} c^{2}\right)-(a c+b d)^{2}\right\}^{2}-4(a c-b d)^{4}=-$ ive
Apply $\mathrm{L}^{2}-\mathrm{M}^{2}=(\mathrm{L}+\mathrm{M})(\mathrm{L}-\mathrm{M})$ and cancel 4.
or $\left[2 a^{2} d^{2}+2 b^{2} c^{2}-(a c+b d)^{2}-(a c-b d)^{2}\right]$
$\left[2 a^{2} d^{2}+2 b^{2} c^{2}-(a c+b d)^{2}+(a c-b d)^{2}\right]<0$
or $\left[2 a^{2} d^{2}+2 b^{2} c^{2}-2 a^{2} c^{2}-2 b^{2} d^{2}\right]$
or $\left[2 a^{2} d^{2}+2 b^{2} c^{2}-4 a b c d\right]<0$
Again cancel 2, the second factor is $(a b-b c)^{2}$ which is + ive and first factor is

$$
a^{2}\left(d^{2}-c^{2}\right)+b^{2}\left(c^{2}-d^{2}\right)
$$

or $\left(c^{2}-d^{2}\right)\left(b^{2}-a^{2}\right)=-\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)$
Hence the required condition is

$$
-\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)(a d-b c)^{2}<0
$$

or $\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)>0$ i.e., + ive
Above will hold good if both $\left(a^{2}-b^{2}\right)$ and $\left(c^{2}-d^{2}\right)$ have the same sign i.e., either both +ive and both -ive.
8. Since x_{1}, x_{2}, x_{3} are in A.P., $2 x^{2}=x_{1}+x_{3}$

$$
\begin{array}{ll}
\therefore & 3 x_{2}=\Sigma x_{1}=1 \\
\therefore & x_{2}=\frac{1}{3}
\end{array}
$$

But x^{3} is a root of given equation

$$
\frac{1}{27}-\frac{1}{9}+\frac{1}{3} \beta+\gamma=0
$$

or

$$
\begin{equation*}
9 \beta+27 \gamma=2 \text { or } \beta+3 \gamma=\frac{2}{9} \tag{1}
\end{equation*}
$$

Again $\Sigma x_{1} x_{2}-x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=\beta$
and $\quad x_{1} x_{2} x_{3}=-\gamma$
Putting $x_{2}=\frac{1}{3}$, we get
$\frac{1}{3}\left(x_{1}+x_{3}\right)+x_{1} x_{3}=\beta$ and $\frac{1}{3} x_{1} x_{3}=-\gamma$
Eliminating x_{3} from the above relation

$$
\begin{aligned}
\frac{1}{3}\left(x_{1}-\frac{3 \gamma}{x_{1}}\right)-3 \gamma & =\beta \\
x_{1}^{2}-3(\beta+3 \gamma) x_{i}-3 \gamma & =0
\end{aligned}
$$

Since x_{1} is real

$$
\begin{align*}
\therefore & \Delta & \geq 0 \\
\therefore & 9(\beta+3 \gamma)^{2}+12 \gamma & \geq 0 \\
\text { or } & 3(\beta+3 \gamma)^{2}+4 \gamma & \geq 0
\end{align*}
$$

We have now to find the intervals for β and γ by the help of (1) and (2).
$\therefore \quad 3\left(\frac{2}{9}\right)^{2}+4 \gamma \geq 0$
or $\quad \gamma+\frac{1}{27} \geq 0$

$$
\begin{equation*}
\therefore \quad \gamma \geq-\frac{1}{27} \tag{3}
\end{equation*}
$$

and from (1)
$9 \beta+27 \gamma+1=3$

$$
3-9 \beta=27 \gamma+\geq 0, \text { by }(3)
$$

or
$3 \beta-1 \leq 0$
$\therefore \quad \beta \leq \frac{1}{3}$.
$\left.\left.\left.\therefore \quad \beta \in]-\infty, \frac{1}{3}\right], \gamma \in\right]-\frac{1}{27}, \infty\right]$.

